
Custom Validation: Overrides using Keywords

BEFORE _A, BEFORE_B
Define a time before which the scan response will be Invalid but the app user can override to
create a Valid result.

KEYWORD
Use a keyword that presents an Invalid result that the app user can override to create a Valid
result.

ALWAYS_VALID
A value with this attribute will always be valid even if a duplicate value.

Using this script you can stop the scanning process with an Invalid response to allow the app
user to override it with a Valid response. The service configuration involves a Middleware
script, a Custom Question, Alter Response HTML, and Keywords in Database.

The first step is to create a Validate Scans Online service type.

A. Middleware

Note: You must ask the support team (support@codereadr.com) for access to Middleware.
When activated you will see this on the Advanced step when creating/editing your services.

The Middleware script is available here.

mailto:supporet@codereadr.com
https://www.codereadr.com/wp-content/uploads/2024/07/USE_middleware_override.pdf

You will need to make some text entries to the Middleware script. Scanning will stop under these
conditions and require the app user to either confirm or “X” out (discard) the scan. The yellow
highlighted keywords need to be in the response text of the database value. The keywords can
be changed but must match in the Middleware and the response text, i.e. if you use “WORKER”
in the Middleware then “WORKER” must be in the response text..

1. You can have multiple time validations in the Middleware script:
const beforeMap = {"BEFORE_A": "18:00", "BEFORE_B": "17:00"};

The time is UTC. The time(s) can be changed as needed.

2. You can have multiple keywords in the Middleware script:
const keywords = ["WORKER", "CHECK ID"];

3. You can make values always be valid:
const alwaysValidKeywords = ["ALWAYS_VALID"];

In the Middleware, you need to enter your API Key:
const apiKey = "ENTER_API_KEY_HERE";

You can optionally change the question’s answer:
/* This is question answer needed to override warning scans */

const overrideApprovedAnswer = "Override Approved";
Important: If you do change the answer from “Override Approved” to different text,
It must match the custom question’s answer option. Here’s the Custom Question section that
needs to be changed:

<div class='checkbox-toolbar'>
<input type='checkbox' oninput='fireAnswerForCR("ansId")' id='ansId'

name='answer' value='Override Approved' />
<label for='ansId'>Override Approved</label>

</div>

When creating your Custom Question you will see the Question ID QID). Copy that and enter it
here:

const overrideQID = "ENTER_QUESTION_ID_HERE";

B. Custom Question

You must copy/paste this HTML into the Custom Question field when creating the question. If
you don’t change “Override Approved, " you do not need to edit this HTML.

https://www.codereadr.com/knowledgebase/creating-a-database/
https://secure.codereadr.com/account/api/key
https://www.codereadr.com/wp-content/uploads/2024/07/USE_Custom_Question_Override.pdf

You need to drag and drop the question here on the Questions tab when creating your services:

C. Alter Response HTML

You need to copy and paste this Alter Response HTML in the “Alter Response Replacement”
field on the Advanced step when creating your services. You need to enter this pattern in the
“Alter Response Pattern” field: ^([\s\S*])$

https://www.codereadr.com/wp-content/uploads/2024/07/USE_Alter_Response_HTML.pdf

D. Keywords in the Database Response Text

For the Middleware to stop the scanning process for potential overrides, the response text in the
service’s associated database must include the same keywords as entered in the Middleware
script (see above). If the keyword matches, the app user will be given the option to accept or
reject the override. If there is no match, then the scanning process proceeds as it normally
would.

The keyword can be in the response text alone or include associated data, e.g. descriptions,
instructions, etc.

#

